高温合金的性能、应用、其他(高温合金的性能特点是什么)
高温合金,又称超合金,高温合金是一种能够在600℃以上及一定应力条件下长期工作的金属材料,具有优异的高温强度,良好的抗氧化和抗热腐蚀性能,良好的疲劳性能、断裂韧性等综合性能。高温合金的材料特征使其成为航空发动机中不可替代的关键材料。在发动机研制中,高温合金材料用量已占到发动机总量的40%~60%。所以,高温合金材料也被誉为“先进发动机基石”。
航空发动机用高温合金占高温合金需求的一半以上。随着国内一批新型号航空发动机进入量产,高温合金需求有望快速增长。以歼10B、歼15、歼16为代表的多款三代半战斗机陆续进入列装,WS-10发动机需求持续增长。未来几年,随着国产大型运输机运20的投产,大涵道比发动机将进入量产阶段;小涵道比中推、小推航空发动机也将逐步进入量产。国产航空发动机需求的增长将驱动航空用高温合金需求进入快速增长期。
高温合金在民用工业中的应用也越来越广泛。高温合金在燃气轮机、车用涡轮增压器、核电、石油石化等行业有着重要的应用。工业化的推进和国内装备制造业的发展将持续拉动民用工业对高温合金的需求,目前民用高温合金占总需求的20%,未来这一比例有望持续提升。
我们根据测算认为,到2020年,我国高温合金需求约为4万吨,对应市场空间90.5亿元:航空发动机、汽车废气涡轮增压器、核电工业用高温合金需求的增长将驱动行业需求的爆发。而目前,我国高温合金产能约1.26万吨,实际产量8000-9000吨左右。高温合金未来7年的需求复合增长率有望超过20%。
一、高温合金概览
(一)高温合金简介及分类
高温合金是在600℃以上的高温及一定及一定应力作用下长期工作的一类金属。高温合金区别于传统金属、合金的特点在于:在高温工作环境下合金具有较高的强度,良好的抗氧化和抗热腐蚀性能,良好的疲劳性能、断裂韧性,并在各种温度下保持良好的组织稳定性和使用可靠性等综合性能,在西方也称之为超合金(Superalloys)。
高温合金材料是航空发动机材料,在现代航空工业的发展中处于不可替代的位置,它的规模发展与否直接决定了航空装备的发展水平。此外,高温合金也广泛应用于航天发动机的热端部件。伴随工业化发展,民用装备工业对高温合金材料的需求呈不断上升趋势,高温合金的耐高温耐磨耐腐蚀的特点使其在柴油机和内燃机涡轮增压、燃气轮机、能源动力、石油化工、玻璃建材等民用工业中的有广泛的应用,民用工业的高温合金使用量已经提高到20%左右。
高温合金可以根据材料成型方式、基体元素种类、合金强化类型等来划分:
1)根据材料成型方式,高温合金可以分为变形高温合金、铸造高温合金(包含普通精密铸造合金、定向凝固合金、单晶合金等)、粉末冶金高温合金(包含普通粉末冶金高温合金和氧化物弥散强化高温合金ODS);
2)根据基体元素种类,高温合金可以分为铁基、镍基、钴基等;
3)根据合金强化类型,高温合金可以分为固溶强化型高温合金和时效沉淀强化合金。
(二)高温合金材料技术难点与创新
高温环境下材料的各种退化速度都被加速,在使用过程中易发生组织不稳定、在温度和应力作用下产生变形和裂纹长大、材料表面的氧化腐蚀等。高温合金所具有的耐高温、耐腐蚀等性能主要取决于它的化学组成和组织结构。
高温合金材料成分十分复杂,含有铬、铝等活泼元素,在氧化或热腐蚀环境中表现为化学部稳定,同时机加工制成的零件表面留下加工硬化和残余应力等缺陷,为材料的化学性能和力学性能带来十分不利的影响。由于合金化程度高,高温合金材料极易产生成分偏析,这种偏析对铸造高温合金和变形高温合金的组织与性能都有重大影响。高温合金的这些特点决定了它区别于普通金属材料的加工工艺。
高温合金的发展是合金理论与生产工艺技术不断改善和革新的过程,通过合金强化+工艺强化来不断结合提高合金的材料性能。合金强化包括合金固溶强化、第二相强化剂晶界强化等;工艺强化包括改善冶炼、凝固结晶、热加工、热处理及表面处理等环节改善合金组织结构等。
高温合金的生产工艺主要包含熔炼、铸造、热处理三个过程。生产工艺对高温合金材料力学性能的影响重大,一项新工艺的引入,往往使高温合金的性能获得一个飞跃,发展处一批新型高温合金,进而推动一代航空发动机和航空飞机的发展。老型号的合金也可以改善工艺达到材料性能的提高。
例如,单晶涡轮叶片的应用显著地推进了航空发动机的进步。F-22用的航空发动机F119的涡轮转子叶片选用了第三代单晶高温合金PWA1484,该材料本身的最高工作温度为1070℃左右,由于采用了计算流体动力学程序设计制造了超级冷却叶片,使涡轮转子叶片的工作温度提高至1621~1677℃(F100发动机为1400℃),可见工艺创新在材料发展中的重要地位。
高温合金材料制备技术与工艺仍处于不断的进步和创新中。比如,冶炼工艺采用了真空感应+电渣重熔+真空自豪熔炼三联工艺,真空自耗熔炼采用了先进熔炼控制方法等;通过定向凝固柱晶合金和单晶合金工艺技术提高材料的高温强度;采用粉末冶金方法减少合金元素的偏析和提高材料强度等。此外,氧化物弥散强化高温合金、金属间化合物高温材料也在不断发展和创新中。
二、高温合金的应用
有研究表明,航空发动机用高温合金占高温合金总需求一半以上,此外还广泛应用于电力、汽车、机械等行业中。
(一)航空发动机
航空发动机被称为“工业之花”,是航空工业中技术含量最高、难度最大的部件之一。作为飞机动力装置的航空发动机,特别重要的是金属结构材料要具备轻质、高强、高韧、耐高温、抗氧化、耐腐蚀等性能,这几乎是结构材料中最高的性能要求。
航空发动机的技术进步与高温合金的发展密切相关,高温合金是推动航空发动机发展的最为关键的结构材料。航空发动机通常可以用其推重比(推力/重量)综合地评定发动机的水平。提高推重比最直接和最有效的技术措施是提高涡轮前的燃气温度。因此高温合金材料的性能和选择是决定航空发动机性能的关键因素。随着航空装备的不断升级,对航空发动机推重的要求比不断提高,发动机对高性能高温合金材料的依赖越来越大。
在现代先进的航空发动机中,高温合金材料用量占发动机总量的40%-60%。在航空发动机上,高温合金主要用于燃烧室、导向叶片、涡轮叶片和涡轮盘四大热段零部件;此外,还用于机匣、环件、加力燃烧室和尾喷口等部件。
航空发动机通常以其推重比的大小来综合判定发动机的水平。提高推重比最直接、最有效的技术措施是提高涡轮前的燃气温度。
燃烧室
燃烧室的功用是把燃油的化学能释放变为热能,是动力机械能源的发源地。燃烧室内产生的燃气温度在1500~2000℃之间。其余的压缩空气在燃烧室周围流动,穿过室壁的槽孔使室壁保持冷却。燃烧筒合金材料承受温度可达800~900℃以上,局部可达1100℃。
用于制造燃烧室的主要材料有高温合金、不锈钢和结构钢;其中用量最大、最为关键的是变形高温合金。由于传统的高温合金板材受限于合金的熔点的限制,现在基本已经达到其极限使用温度,难以进一步发展。要使燃烧室用高温合金材料进一步发展,必须研究全新的材料基体和材料制备工艺。目前国际在研的新材料有碳/碳复合材料、高温陶瓷材料、氧化物弥散强化合金、金属间化合物、高温高强钛合金等。
导向叶片
导向叶片是调整从燃烧室出来的燃气流动方向的部件,是航空发动机上受热冲击最大的零件之一。一般来讲,导向叶片的温度比同样条件下的涡轮叶片温度高约100℃,但叶片承受的应力比较低。
在熔模精铸技术突破后,铸造高温合金成为了导向叶片的主要制造材料。近年来,由于定向凝固工艺的发展,用定向合金制造导向叶片的工艺也在试制中;此外,FWS10发动机涡轮导向器后篦齿环制造采用了氧化物弥散强化高温合金。
涡轮盘
涡轮盘在四大热端部件中所占大。涡轮盘工作时,轮缘温度达550-750℃,而轮心温度只有300℃左右,整个部件的温差大;转动时承受重大的离心力;启动和停车过程中承受大应力低疲劳周期。
用于涡轮盘制造的主要材料是变型高温合金,其中G4169合金是用量最大、应用范围最广的一个主要品种。近年来,随着航空发动机性能不断提高,对涡轮盘要求也越来越高,粉末涡轮盘组织均匀、晶粒细小、强度高、塑性好等优点使其成为航空发动机上理想的涡轮盘合金,但我国工艺生产的粉末涡轮盘夹杂物较多,正在进一步研制中。
涡轮叶片
涡轮叶片是航空发动机上最关键的构件,涡轮叶片的工作环境,涡轮叶片在承受高温同时要承受很大的离心应力、振动应力、热应力等。用于涡轮叶片制造的主材材料是铸造高温合金。近三十多年来铸造工艺的发展,普通精铸、定向和单晶铸造叶片合金得到了广泛应用。单晶合金在国际上得到了快速发展,已经发展了五代单晶合金,成为高性能现金航空发动机高温涡轮工作叶片的主要材料;我国在20世纪80年代开始单晶合金研制,根据专著《中国高温合金50年》(师昌绪),第二代单晶合金已经在先进发动机中进行使用。
(二)航天发动机
航天发动机中的特殊工作环境要求使其使用材料必须受高温、高压、高的温度梯度变化、高动态载荷和特殊戒指的考验,因此对材料的综合性能和加工性能提出了很高的要求。高温合金材料已经占据了航天发动机相当大的比重,在发动机中的应用比比例接近总重量的一半,高温合金材料技术的发展直接影响航天发动机研制水平。
航天发动机用高温合金原则上都可以采用航空发动机用高温合金,但航天发动机材料除了承受高温冲击外,还有低温(-100℃以下)环境要求。由于高温合金精密铸造工艺限制,过去形状极其复杂的结构件在航天发动机上一直没有真正加以应用。随着工艺的进步,航天发动机上的许多关键热部件都采用了无余量整体精密铸造高温合金精铸件,简化了发动机结构,降低发动机重量,减少了焊接部分,缩短研制和生产周期,降低研制和生产成本,提高发动机可靠性。随着航天发动机技术的进步,航天发动机用高温合金逐渐呈现出复杂化、薄壁化、复合化、多位一体、无余量的趋势。典型的有涡轮转子、导向器、泵壳体等。
我国的“长征”系列火箭以及“神舟”系列飞船,发动机的核心部分都采用了高温合金材料。目前,航天领域使用的液氧煤油和液氧液氢航天运载发动机、小型涡喷涡扇发动机已经定型,并开始批量生产,国内对航天用高温合金母合金和精铸件的需求也在不断增长,进入一个新的增长期。
(三)民用工业高温合金的应用
随着工业化的推进,工业向、大型化发展,高温合金在民用工业中的需求也日益增长。高温合金合金也是舰船、火车、汽车涡轮增压器叶片及各类工业燃机叶片的优选材料;铁路运输的高速化、造船业的高品质要求(特别是出口造船)、舰艇动力的高效要求、工业燃机应用的高速发展等急需高性能的高温合金母合金。目前,国内民用工业高温合金占高温合金总需求的20%,而美国50%的高温合金应用于民用工业领域。燃气轮机
燃气轮机是高温合金的另一个主要用途。燃气轮机装置是一种以空气及燃气为介质的旋转式热力发动机,它的结构与飞机喷气式发动机一致,也类似蒸汽轮机。燃气轮机的基本原理与蒸汽轮机很相似,不同处在于工质不是蒸汽而是燃料燃烧后的烟气。燃气轮机属于内燃机,所以也叫内燃气轮机。构造有四大部分:空气压缩机,燃烧室,叶轮系统及回热装置。
燃气轮机的需求增长迅速,除用于发电外,还用于舰船动力、天然气疏松的加气站等。与航空用高温合金叶片相比,燃气轮机用高温合金的使用寿命长(10万小时),耐热腐蚀、尺寸大,质量要求很高。
汽车废气涡轮增压器
汽车废气增压器涡轮也是高温合金材料的重要应用领域。目前,我国涡轮增压器生产厂家所采用的涡轮叶轮多为镍基高温合金涡轮叶轮,它和涡轮轴、压气机叶轮共同组成一个转子。此外内燃机的阀座、镶块、进气阀、密封弹簧、火花塞、螺栓等都可以采用铁基或镍基高温合金。
涡轮增压系统对燃油效率和性能提升均有明显效果。涡轮增压是利用发动机排出的废气的能量来推动涡轮室内的涡轮,涡轮又带动同轴的叶轮,叶轮压送由空气滤清器管道送来的空气,使之增压进入气缸。当发动机转速增快,废气排出速度与涡轮转速也同步增快,叶轮就压缩更多的空气进入气缸,空气的压力和密度增大可以燃烧更多的燃料,相应增加燃料量就可以增加发动机的输出功率。一般而言,加装废气涡轮增压器后的发动机功率及扭矩要增大20%—60%。2008年中国汽车工业仅涡轮转子对高温母合金的需求就在1,900吨以上。